Рассадина Юлия Владимировна,

учитель химии,

МБОУ «Школа №154 с углубленным изучением отдельных предметов» г.о. Самара, г.о. Самара, Россия

ПРАКТИЧЕСКОЕ ЗНАЧЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ЗАДАЧ ПО ХИМИИ ДЛЯ УЧАЩИХСЯ 8 КЛАССА

Аннотация. В статье рассматривается значение использования задач Умение экспериментальных no XUMUU в восьмом классе. решать экспериментальные задачи по химии может позволить обучающимся проверить свои теоретические знания, установить причинно-следственные связи и открыть для себя новые явления и закономерности.

Ключевые слова: экспериментальные задачи по химии, обучение химии в школе, формирование практических умений по химии.

Методологическим основанием обновленных ФГОС ООО является системнодеятельностный подход и ориентация обучения на практическое применение полученных знаний и умений обучающихся при изучении школьных предметов. Изучение химии предполагает объемную работу с теоретическим материалом и применение знаний при решении химических задач, а также при выполнении экспериментов. Химический эксперимент является одним из требований ФГОС для учащихся среднего звена. Именно поэтому так важно уделять особое внимание решению экспериментальных химических задач.

В большинстве школ изучение химии начинается в восьмом классе, когда у учащихся уже есть база знаний по другим смежным предметам, которые пригодятся при решении химических задач. К этому времени ученики уже умеют решать задачи по математике и физике. При решении химических задач к их умению в решении задач, добавляется химическое условие и решение сопровождается составлением химических процессов и превращений, а само решение предполагает сформированное умение

учащихся осуществлять математические расчеты. Особенностью в решение экспериментальных химических задач становится проведение химических опытов, подтверждающих или констатирующих правильность решения.

Все многообразие химических задач, изучаемых в школьном курсе, можно разделить на три класса: расчетные, качественные и экспериментальные. Классы, в свою очередь, делятся на типы. Выделение типов проводится на основе объекта изучения.

Например, при решении расчетных задач речь идет о количественном подходе, решении уравнений и расчета по формулам. В то время, как при решении качественных задач итогом должно стать какое-либо умозаключение (сравнение состава и свойств веществ, наблюдение химических процессов и явлений). Экспериментальные задачи подразделяются также на качественные и количественные. При решении таких задач применяется такая же классификация, как и для предыдущих классов. При решении экспериментальных количественных задач требуются математические расчеты данных, полученных экспериментальным путем (определение примесей). Экспериментальные качественные задачи не требуют количественных данных и математических расчетов (определение типа реакции по характерным признакам) [2, с.105].

Экспериментальная химическая задача — это модель проблемной ситуации, которая требует от учащихся не только теоретической основы и мыслительных действий, но и практических. Данная деятельность направлена на развитие химического мышления и расширение знаний предмета.

Экспериментальные задачи могут быть применены учителем при фронтальной работе, демонстрации эксперимента самим учителем или учащимся, а также, как и домашнее задание.

Проанализировав учебник О. С. Габриеляна «Химия. 8 класс», было обнаружено 25 экспериментальных задач разного типа. Задачи применяются автором в качестве наглядного объяснения нового материала и закрепления изученной темы. О. С. Габриелян не сразу внедряет данные задачи, а по мере сформированности базовых химических понятий и навыков. На мой взгляд, этого количества недостаточно, поэтому

было подобрано еще 10 экспериментальных задач, которые я активно использую в своей профессиональной деятельности.

При использовании на уроке экспериментальных задач, учащимся раздаются инструктивные карты, которые они заполняют при решении задачи. Перед выполнением подобного вида задач, обязательно проводится инструктаж с заполнением журнала по технике безопасности. В данной статья приведу пример одной из задач [1, c.42].

Задача №1	
Класс	8
Тема изучения	Электролитическая диссоциация/Типы химических реакций
Задача	Осуществите практически цепочку реакций: CuSO ₄ – Cu(OH) ₂ – CuO –
	$CuCl_2$ – Cu . Напишите уравнения реакций и определите их тип.
V	нструктивная карточка к экспериментальной задаче
Необходимое	Штатив с пробирками, спиртовка, спички, держатель для пробирок,
оборудование:	железная скрепка
Необходимые	Сульфат меди, гидроксид натрия, соляная кислота
реактивы:	
	Ход работы, решения задачи
1. Проанализи	ровать данную цепочку реакций и предположить ее решение в тетради
2. Провести хі	имические реакции для подтверждения/опровержения данного решения
3. В пробирку	с сульфатом меди прилить гидроксид натрия
4. Нагреть про	обирку
5. В пробирку	с раствором прилить соляную кислоту и нагреть
6. Поместить в раствор железную скрепку	
7. Записать наблюдаемые явления и уравнения реакции в тетрадь	
8. Определить типы химических реакций	
Наблюдения:	При добавлении гидроксида натрия к сульфату меди выпадает осадок
	синего цвета.
	При нагревании гидроксида меди образуется оксид меди и осадок
	изменяет цвет на черный.
	При добавлении соляной кислоты к оксиду меди и дальнейшем
	нагревании осадок растворяется, а раствор приобретает голубой цвет.
	Поместив в раствор скрепку, она покрывается красным налетом, а
	раствор приобретает зеленый цвет.

Уравнения реакций:	1. CuSO ₄ + 2NaOH = Na ₂ SO ₄ + Cu (OH) ₂ ↓ (реакция обмена)
	2. Cu (OH) ₂ = t CuO ↓+ H ₂ O (реакция разложения)
	3. CuO + 2HCl → CuCl₂↓ + H₂O (реакция обмена)
	4. CuSO₄+Fe = FeSO₄+Cu↓ (реакция замещения)
Выводы:	Осуществили цепочку превращений опытным путем и определили типы
	реакций

Использование учителем на уроках химии экспериментальных задач позволит обучающимся проверить свои теоретические знания, установить причинно-следственные связи и открыть для себя новые явления и закономерности. Также решение экспериментальных задач поможет учащимся развить исследовательские навыки и может помочь с выбором будущей профессии.

Список литературы

- 1. Заживихина Е.Ю., Голова П.М., Громыко К.Н. Методика организации практических работ по химии // Профессиональная ориентация. 2024. № 2-1. С. 41-44.
- 2. Сафина Л.Г. Методические особенности использования экспериментальных задач по химии //Самарский научный вестник. 2014. № 2 (7). С. 104-106.