УДК 004.22

Михайлюк Ольга Демьяновна,

преподаватель,

Филиал Воронежского государственного технического университета в городе Борисоглебске,

г. Борисоглебск, Россия

ПЕРЕВОД ШЕСТНАДЦАТЕРИЧНОЙ, ВОСЬМЕРИЧНОЙ И ДЕСЯТИЧНОЙ СИСТЕМ СЧИСЛЕНИЯ ЧЕРЕЗ ДВОИЧНУЮ

Аннотация. В статье предложен фрагмент урока по объяснению не классического приема преподнесения материала по переводу из одной системы счисления в другую. Автором предложен альтернативный способ запоминания материалов и проведения вычислений и преобразований в рамках данной темы.

Ключевые слова: системы счисления, перевод в системы счисления, десятичная система счисления, двоичная система счисления, восьмеричная и шестнадцатеричная системы счисления.

Объясняя тему системы счисления, чаще всего, предлагают классическую подачу данного материала. Так перевод из десятичной в любую другую систему счисления осуществляется путем деления числа и результатов его деления на новую систему счисления, а новое число формируется из последнего результата деления и остатков деления, записанных в обратном порядке. Перевод из восьмеричной или шестнадцатеричной систем счисления в двоичную происходит через таблицу триад и тетрад соответственно и т.д. С данным материалом можно ознакомиться в любом учебнике по информатике, потому на нем заострять внимание не будем.

Цель данного материала в знакомстве с альтернативным способом подачи части материала. Объясняя данную тему после выдачи классического метода можно предложить второй способ расчетов и запоминания материала. Все переводы будут завязаны на двоичную систему счисления.

Для начала вспомним алгоритм перевода из любой системы счисления в десятичную:

- 1) Начиная с конца приписать к каждой цифре разряд, начиная от нуля;
- 2) Выполнить следующие действия записать сумму произведений, состоящих из числа, к которому был подписан разряд и основания предыдущей системы счисления возведенного в степень разряда;
 - 3) Получившийся результат и будет числом в десятичной системе счисления.

Как уже упоминалось акцент будет делаться на двоичную систему счисления, поэтому рассмотрим соответствующий пример, например переведем число 10101₂ в десятичную систему счисления.

- 1) Согласно алгоритма, расставляем около каждой цифры разряды начиная отсчет от нуля: 1403120110;
- 2) Далее необходимо записать сумму произведений. Основание системы счисления два: $1^40^31^20^11^0=1\times2^4+0\times2^3+1\times2^2+0\times2^1+1\times2^0$;
- 3) Проведем математические вычисления и получим результат: $140^31^20^{110}2=1\times2^4+0\times2^3+1\times2^2+0\times2^1+1\times2^0=16+0+4+0+1=21_{10}$.

Теперь, если достаточно внимательно проанализировать данный пример, можно заметить следующее:

- 1) так как двоичное число это набор нулей и единиц, то результатом математического вычисления, являются только комбинации с единицами;
- 2) из-за того что умножение идет на единицу, то в результате получаются только суммы двоек в соответствующих степенях.

Исходя из этого можно предложить другой вариант перевода из двоичной в десятичную систему счисления и обратно. Оформить его удобно в виде таблицы. Первый столбец это число в десятичной системе счисления, а все последующие столбцы это двойки в разных степенях. В таблице 1 приведен пример перевода некоторых чисел.

Таблица 1 Таблица перевода с примерами

Число в де-	Число в двоичной системе счисления										
сятичной	2 ¹⁰	2 9	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	20
системе	1024	512	256	128	64	32	16	8	4	2	1

счисления									
21					1	0	1	0	1
218		1	1	0	1	1	0	1	0
130		1	0	0	0	0	0	1	0
94			1	0	1	1	1	1	0

При переводе из двоичной в десятичную систему счисления результат получается путем сложения. То есть записываем двоичное число в данную таблицу, а затем складываем все значения 2ⁿ степени, где стоят единицы между собой. Например, число 11011010₂ это сумма 128+64+16+8+2=218₁₀.

В случаи перевода из десятичной в двоичную систему производим обратные действия, то есть вычитания по следующему алгоритму:

- 1) находим максимальное значение 2ⁿ степени, которое можно вычесть из рассматриваемого десятичного числа и результат останется положительным. Под найденным значением двойки ставим цифру 1;
 - 2) из десятичного числа вычитаем значение 2ⁿ степени;
- 3) для получившегося остатка вновь находим максимальное значение 2ⁿ степени и повторяем все действия, описанные ранее до получения нуля.

Рассмотрим на примере числа 130_{10} . Согласно алгоритму необходимо найти максимальное 2^n степени, которое можно вычесть из нашего числа, в данном примере таковым является число 128 (2^7). Далее необходимо найти разницу 130-128=2. Теперь необходимо найти для числа 2 максимальное 2^n степени, которое можно вычесть. В данном примере это 2 (2^1). Вновь находим разницу 2-2=0. Так как мы получили ноль, то можем сформировать наше число в двоичной системе счисления. Единицы стоят на позициях 2^7 и 2^1 , остальные позиции занимают нули - $130_{10}=10000010_2$.

Переведем еще одно число 94_{10} . Первая единица встанет на позиции $64(2^6)$, остаток равен 30 (94-64). Далее единица на: $16(2^4)$ остаток 14(30-16), после $8(2^3)$ остаток 6(14-8), затем $4(2^2)$ остаток 2(6-4) и последним будет 2^1 . Следовательно, получившееся число будет 94_{10} =1011110₂.

Данный метод перевода чисел скорее удобен при переводе из двоичной в десятичную систему, так как в отличие от классического менее громоздок. Но если требуется переводить достаточно большое количество чисел, то он достаточно удобен. К тому же

при использовании таблицы нет необходимости переворачивать числа, как это делается с результатом последнего деления и остатками от деления при переводе из десятичной в двоичную системы счисления.

Теперь рассмотрим, в чем же выражается связь ранее рассмотренного метода с восьмеричной и шестнадцатеричной системами счисления. Вспомним, что для перевода из восьмеричной или шестнадцатеричной в двоичную системы счисления необходимо воспользоваться специальной таблицей, в которой для восьмеричной системы значения изменяются в триадах от 0(000) до 7(111), а для шестнадцатеричной в тетрадах от 0(0000) до F=15(1111).

Давайте обратим внимание на последние четыре столбца таблицы 1. Если мы сложим $8(2^3)$, $4(2^2)$, $2(2^1)$, $1(2^0)$, то получим 8+4+2+1=15, то есть, поставив в нашу таблицу в данные графы единицы, мы получим 15 (1111_2). Или пойдем от обратного, число 5 в восьмеричной системе счисления имеет запись в двоичной системе равное 101 ($5_8=101_2$). Подставив, его в таблицу получаем $101_2=4(2^2)+1(2^0)=5$.

При желании можно проверить все значения для восьмеричной и шестнадцатеричной систем счисления. То есть данную таблицу можно использовать не только для перевода двоичной и десятичной систем счисления, но и применительно к восьмеричной и шестнадцатеричным системам счисления. Применительно к последним системам счисления может быть использовано для высчитывания значений, а не для запоминания таблиц перевода значений.

В заключении хотелось бы отметить, что выбор методов вычисления, конечно же, зависит от конкретной ситуации. Данный метод заставляет запоминать степени двоек и формирует «привычку» быстрого счета (сложения и вычитания чисел). Но с другой стороны он наглядно объясняет взаимосвязь разных систем счисления между собой.

Список литературы

1. Информатика. 10 кл. Углубленный уровень: учебник/ М.Е. Фиошин, А.А. Рессин, С.М. Юнусов. – 3-е изд., стереотип. – М.: Дрофа, 2016. – 366 с.