УДК 374.1

Розова Юлия Владимировна,

студентка 4 курса направления подготовки

44.03.05 «Педагогическое образование (с двумя профилями).

Профиль: Информатика. Профиль: Физика»,

Педагогический институт,

ФГБОУ ВО «Тихоокеанский государственный университет»,

г. Хабаровск;

Редько Екатерина Александровна

старший преподаватель кафедры математики и информационных технологий, Педагогический институт,

ФГБОУ ВО «Тихоокеанский государственный университет»,

г. Хабаровск

ОСОБЕННОСТИ ПОДГОТОВКИ К КОМПЬЮТЕРНОМУ ЕГЭ ПО ИНФОРМАТИКЕ И ИКТ

Аннотация. В 2021 году впервые единый государственный экзамен учебному «Информатика ПО предмету И информационнокоммуникационные технологии (ИКТ)» будет проводиться в компьютерной форме (КЕГЭ). Меняется не только формат сдачи экзамена, позволяющий ученику выбирать в качестве средств решения задачи табличный процессор или среду программирования, не ограничиваясь при этом аналитическими рассуждениями. Структура и содержание контрольноизмерительных материалов (КИМ) ЕГЭ по информатике также претерпели изменения. В связи с этим, становится актуальным пересмотр основных рекомендаций по подготовке к ЕГЭ по информатике. В настоящей статье авторы выделяют ключевые моменты, на которые необходимо обратить внимание как учащимся, так и учителям информатики, выпол-

няющим подготовку выпускников к сдаче ЕГЭ по учебному предмету «Информатика и информационно-коммуникационные технологии (ИКТ)».

Ключевые слова: единый государственный экзамен (ЕГЭ), информатика, компьютерная форма ЕГЭ (КЕГЭ), структура и содержание КИМ, рабочая станция КЕГЭ, новые задания, способы выполнения отдельных заданий.

В соответствии с утвержденной «Спецификацией контрольных измерительных материалов» в 2021 году единый государственный экзамен по учебному предмету «Информатика и информационно-коммуникационные технологии (ИКТ)» будет проводиться в компьютерной форме (КЕГЭ).

Этот формат вносит свои коррективы как в процесс сдачи экзамена, так и в процесс подготовки. Возможность использования компьютера еще и при решении задач, которые ранее решались только аналитически, требуют от выпускника нового взгляда на структуру и содержание контрольно-измерительных материалов (КИМ) ЕГЭ по информатике.

Стоит отметить, что особую роль при выполнении варианта экзаменационной работы теперь имеет навык программирования. Даже вычислительный шаг возможно реализовать теперь в среде программирования, написав простой код вывода на экран результата вычисления выражения любой сложности.

Таким образом, становится актуальным пересмотр основных рекомендаций по подготовке к ЕГЭ по информатике с учетом нового формата сдачи экзамена.

Первым этапом нашего исследования было изучение нормативной документации Федерального института педагогических измерений (ФИПИ) об организации и проведении КЕГЭ по информатике; обобщение и систематизация сведений о требуемых технических характеристиках

рабочих станций КЕГЭ; выделение и систематизация видов используемого ПО, уточнение возможных версий.

Следует отметить, что версии устанавливаемого ПО определяются субъектом Российской Федерации на основе указанного ограничения [1] (рис. 1).

Также, в качестве выводов первого этапа исследования, отметим особенности использования ПО в компьютерном ЕГЭ по информатике:

- на протяжении сдачи экзамена на компьютере доступ в Интернет отсутствует;
- ни ручная, ни автоматизированная проверка текстов программ,
 промежуточных выкладок в редакторе электронных таблиц не производится;
- вся проверка сводится к анализу кратких и расширенных ответов (набор данных) с числовыми результатами выполнения задания. Основная цель участника выполнение задания. Право выбора инструмента воспользоваться ли редактором электронных таблиц, системой программирования на том или ином языке остается за участником.

Категория ПО	Наименование ПО	Версия ПО
Редакторы электронных таблиц	Microsoft Excel LibreOffice Calc	2013 или более новый 6.0 или более поздняя
Текстовые редакторы	Microsoft Word Libre Office Writer Блокнот Windows Microsoft Windows WordPad	2013 или более новый 6.0 или более поздняя Соответствует версии ОС Microsoft Windows
Среды		
программирования на школьном Алгоритмическом Языке 	КуМир НИИСИ РАН	Стандартная версия 2.1, Версия 1.9 (желательна установка обеих версий)
• на языке С#	Среда разработки Microsoft Visual Studio	Community 2019
• на языке С++	Среда разработки Code::Blocks с компилятором MinGW GNU C/C++	Code::Blocks: 20.03, версия GNU C/C++: 8.1.0, 64-битная
	Среда разработки Microsoft Visual Studio	Community 2019 с поддержкой С++
• на языке Pascal	Среда Free Pascal Среда PascalABC.Net	Версия 3.2.0 Версия 3.7.1
 на языке Java 	Java JDK	Java SE Development
	IntelliJ IDEA	Kit 11.0.8 Версия 2020.2.3 Community edition
	Eclipse IDE	Версия 2020-09 R, Eclipse IDE for Java Developers
• - на языке Python	Интерпретатор Python Среда разработки Wing IDE 101	Версия 3.8.6, 64-бит Версия 7.2.6
	Среда разработки РуCharm	Версия 2020.2.3 Community Edition

Рисунок 1. Возможные версии ПО КЕГЭ по информатике и ИКТ

Особенности интерфейса рабочей станции КЕГЭ

ЕГЭ по информатике в 2021 году будет проводиться в компьютерной форме.

Официальный тренажер, позволяющий ознакомиться с интерфейсом рабочей станции, размещен на сайте Федерального центра тестирования [2].

Также будет полезной ссылка на сайте К.Ю. Полякова на демоверсию КЕГЭ [3] — она является копией официального тренажёра, но позволяет загружать любой вариант из генератора. Кроме того, после завер-

шения пробного экзамена система выдает количество баллов, которые бы набрал учащийся, если бы отправил такие ответы.

В инструкции демоверсии КЕГЭ по выполнению экзаменационной работы рассмотрены основные этапы работы в системе при сдаче экзамена, компоненты интерфейса [4] (рис. 2). Знакомство с элементами интерфейса системы КЕГЭ целесообразно провести на этапе подготовки к экзамену.

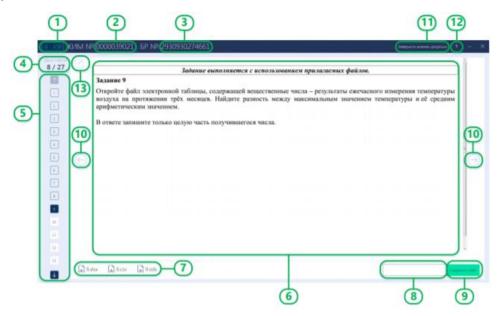


Рисунок 2. Элементы интерфейса системы КЕГЭ по информатике и ИКТ

Необходимо отметить, что в процессе сдачи экзамена учащийся может выполнять задания в любой последовательности, а также возвращаться и изменять ранее внесенный ответ.

Структура и содержание контрольных измерительных материалов КЕГЭ по информатике

Содержание заданий разработано по тем же, что и ранее, основным темам курса информатики и ИКТ: «Информация и её кодирование», «Моделирование и компьютерный эксперимент», «Системы счисления», «Логика и алгоритмы», «Элементы теории алгоритмов», «Программиро-

вание», «Архитектура компьютеров и компьютерных сетей», «Обработка числовой информации», «Технологии поиска и хранения информации» [5].

В сравнительном анализе К. Ю. Полякова ЕГЭ прошлых лет с КЕГЭ 2021 отмечены характерные изменения в структуре и содержании экзаменационной работы, а именно [6]:

- некоторые задания КИМ прошлых лет отсутствуют в новой версии КИМ (1, 7, 12, 17, 19, 21, 23, 24 и 25 в старой нумерации);
- добавлены новые практические задания (задания 9, 10, 18 и 26 нового КИМ). Новое задание 18 двумерная задача на динамическое программирование;
- при выполнении некоторых заданий (9, 10, 18, 24, 26, 27) используются дополнительные файлы, входящие в КИМ;
- некоторые задания, которые ранее решались аналитически, можно решить с помощью программы или в табличном процессоре;
 - задание 26 по теории игр превратилось в три задания 19, 20 и 21;
 - максимальный первичный балл теперь равен 30 (было 35).

Каждое задание КИМ КЕГЭ по информатике и ИКТ в 2021 году предполагает краткий ответ или ответ в виде набора чисел. При этом система оценивания выполнения заданий экзаменационной работы предполагает автоматизированное оценивание ответов на все задания КИМ ЕГЭ. С позиции выпускника это значит, что никто теперь не будет читать текст программы, важна только ее результативность.

Выполним распределение заданий в КЕГЭ по следующему параметру – «требуется ли для выполнения заданий специализированное ПО или нет»: в работу входит 9 заданий, для выполнения которых, помимо тестирующей системы, необходимо специализированное ПО, а именно ре-

дакторы электронных таблиц и текстов, среды программирования (таблица 1). Остальные 18 заданий сохраняют преемственность с КИМ ЕГЭ прошлых лет (экзамена в бланковой форме). При этом они адаптированы к новым условиям сдачи экзамена, в тех случаях, когда это необходимо.

Таблица 1. Распределение заданий, для которых требуется использование специализированного программного обеспечения, по тематике содержательных линий

Тематика новых компьютерных зада-	Задания (всего 9)
ний	
	Информационный поиск средствами
Информационный поиск	операционной системы или текстового
	процессора (10)
	– Умение обрабатывать числовую
	информацию в электронных таблицах
Обработка данных в электронных таб-	(9)
	– Умение использовать электронные
лицах	таблицы для обработки массивов
	целочисленных данных – задача
	динамического программирования (18)
	– Вычисление рекуррентных
	выражений (16)
Программирование	– Умение составить алгоритм и
	записать его в виде простой
	программы (10–15 строк) на языке
	программирования (17)
	– Умение создавать собственные
	программы (10–20 строк) для
	обработки символьной информации
	(24)

– Умение создавать собственные
программы (10-20 строк) для
обработки целочисленной информации
(25)
– Умение обрабатывать целочисленную
информацию с использованием
сортировки (26)
– Умение создавать собственные
программы (20–40 строк) для анализа
числовых последовательностей (27)

Это не значит, что ученик не может использовать ПО для решения других заданий.

Так, например, привлечь компьютер становится возможным при решении задач: на логику (2 и 15); по теме «Системы счисления» (14), если использовать длинную арифметику языка Python; на выполнение алгоритмов для исполнителя (12); на выполнение и анализ простых программ (5 и 6).

Выполнение заданий по программированию допускается на языках программирования (семействах языков) C++, Java, C#, Pascal, Python, Школьный алгоритмический язык. Из примеров фрагментов кода в заданиях исключены примеры на Бейсике.

Рассмотрим, в качестве примера, задание 6 и возможные способы его решения (не только аналитически, но и с использованием программы, реализующей переборный алгоритм).

Тема задания: анализ программы с циклом.

Что проверяется: знание основных конструкций языка программирования, понятие переменной, оператора присваивания.

Что нужно уметь для реализации аналитического решения [6]:

- уметь выполнять ручную прокрутку программы;
- уметь выделять переменную цикла, от изменения которой зависит количество шагов цикла;
 - уметь определять количество шагов цикла;
 - уметь определять переменную, которая выводится на экран.

Пример задания (автор М.В. Кузнецова) [6]:

Определите, при каком наименьшем введенном значении переменной s программа выведет число 256.

```
#include <iostream>
using namespace std;
int main() {
  int s, n = 1;
  cin >> s;
  while( s <= 45 ) {
    s = s + 4;
    n = n * 2;
    }
  cout << n;
}</pre>
```

Выпускник может решить данное задание аналитически, то есть, не прибегая к помощи специализированного ПО, по следующему алгоритму:

- 1) анализ программы:
- в конце программы выводится значение переменной n;
- начальное значение переменной n равно 1 (единице);
- на каждой итерации цикла значение переменной ${\bf n}$ увеличивается в 2 раза;

- 2) подсчет количества итераций цикла: поскольку $256 = 2^8$, то делаем вывод для того, чтобы получить n = 256, необходимо выполнить тело цикла 8 раз;
- 3) анализ изменения параметра цикла: при каждой итерации цикла значение переменной s увеличивается на 4, то есть после 8 итераций цикла значение переменной s можно получить по формуле $s=s_0+8*$ $4=s_0+32$, где s_0 введенное начальное значение s;
- 4) оценка возможных значений параметра цикла: цикл останавливается при условии s>45, то есть при $s_0+32>45$, или $s_0>13$. Так как переменная s целого типа, то наименьшим значением, большим чем 13, является число 14.

Ответ: 14.

Особенность КЕГЭ по информатике и ИКТ состоит в том, что выпускник может при выполнении любого задания воспользоваться программными средствами, следовательно, задание 6 можно выполнить с помощью программы, реализующей переборный алгоритм по значениям s.

Ниже приводится решение данной задачи на языке C++ и результат (рис. 3):

```
#include <iostream>
using namespace std;
int main() {
   int s, s0, n;
   s0=45;
   while (s0>1){
      s=s0;
      n=1;
      while(s <= 45 ) {</pre>
```

```
s = s + 4;
n = n * 2;
}
if (n==256) cout << s0 <<endl;
s0--;
}
return 0;
}</pre>
```


Рисунок 3. Результат работы программы — выведены значения ${\rm s}_{\rm 0}$, наименьшее из них — 14

Комментарии к программе:

- при каждой итерации цикла значение переменной s увеличивается, и цикл заканчивается, когда оно станет больше 45, то есть начальное значение s должно быть меньше или равно 45;
- необходимо организовать цикл, в котором будет уменьшаться начальное значение s_0 и выводиться на экран в том случае, если в результате работы исходного алгоритма получилось число 256;
- программа будет последовательно выводить все числа, при вводе которых исходный алгоритм печатает 256, после чего задача ученика заключается в выборе наибольшего или наименьшего (согласно условию задачи) значения s_0 ;

- стоит обратить внимание, что здесь обязательно нужно использовать новую переменную s_0 , поскольку переменная s изменяется в ходе работы внутреннего цикла.

Выводы. Можно сформулировать базовые рекомендации к подготовке к КЕГЭ. Учащимся необходимо:

- формировать и развивать навыки практического программирования, в частности уделить внимание работе с файлами, сортировке, работе с массивами, алгоритмам работы с целыми числами и строками символов;
- закреплять и развивать навыки обработки числовой информации в электронных таблицах;
- уделять повышенное внимание теоретическим основам информатики, алгебре логики, межпредметным связям с математикой, основам комбинаторики.

Список литературы

- 1. Письмо Рособрнадзора о проведении КЕГЭ. URL: https://kpolyakov.spb.ru/download/rosobr2021.pd (дата обращения: 30.04.2021).
- 2. Демонстрационная версия станции КЕГЭ. URL: http://kege.rustest.ru/ (дата обращения: 30.04.2021).
- 3. Тренажер для подготовки к КЕГЭ. URL: https://kpolyakov.spb.ru/school/ege/kege/start.htm?varId=1 (дата обращения: 30.04.2021).
- 4. Инструкция для участников КЕГЭ по использованию ПО. URL: https://www.rustest.ru/ (дата обращения: 30.04.2021).

- 5. Федеральный институт педагогических измерений / Демоверсии, спецификации, кодификаторы. URL: https://fipi.ru/ege/demoversii-specifikacii-kodifikatory#!/tab/151883967-5 (дата обращения: 30.04.2021).
- 6. Преподавание, наука и жизнь: сайт / К. Ю. Поляков. Санкт-Петербург, 2000-2021. – URL: https://kpolyakov.spb.ru/ (дата обращения: 06.04.2021).