ОБРАЗОВАТЕЛЬНАЯ СРЕДА

Чикалова Любовь Георгиевна,

преподаватель химии, ГБПОУ ЛО «Тихвинский медицинский колледж», г. Тихвин, Ленинградская область

МЕТОДИЧЕСКАЯ РАЗРАБОТКА СЕМИНАРСКОГО ЗАНЯТИЯ ПО ТЕМЕ «ПЕРИОДИЧЕСКИЙ ЗАКОН И ПЕРИОДИЧЕСКАЯ СИСТЕМА Д.И. МЕНДЕЛЕЕВА»

Аннотация. Актуальность разработки – демонстрирует, каким образом формируется умение характеризовать химические элементы по положению в Периодической системе Д.И. Менделеева. Учебный материал излагается с применением активных методов и приемов, что позволяет обучающимся самостоятельно формулировать в своей деятельности проблемы и находить пути их разрешения.

Ключевые слова: строение атома, свойства, элемент, соединение.

Цель занятия:

1. Предметно-дидактическая: формирование умения давать характеристику элемента по положению в Периодической системе Д.И. Менделеева.

Планируемые результаты занятия:

- 1. Обучающие:
- знают физический смысл порядкового номера элемента, номера периода, номера группы в ПС; порядок заполнения электронами энергетических подуровней;
- применяют свои знания для характеристики элемента по положению в ПС Д.И. Менделеева;
 - используют приемы самоконтроля.
 - 2. Развивающие:
 - развитие умения сравнивать, анализировать; выделять главное;
 - развитие навыков коллективной и самостоятельной работы;
- развитие умения устанавливать причинно-следственные связи; излагать свои мысли; способствовать мотивации.
 - 3. Воспитательные:
 - формирование способности к самооценке;
- формирование профессионально значимых качеств личности через учебную дисциплину (организованность, внимательность, такт, ответственность, аккуратность).

Tun занятия:

- по ведущей дидактической цели: повторение изученного материала;
- по характеру совместной деятельности: синтетический (КСО коллективный способ обучения);
 - по ведущему методу обучения: проблемный.

Методы обучения:

- основной: проблемный;
- дополнительные: работа в парах сменного состава, беседа, объяснение, самостоятельная работа, практическая работа и др.

Внутридисциплинарные связи:

- 1. применяют теоретические знания на практике;
- 2. решают химические задачи на применение полученных знаний. *Междисциплинарные:*
- определяют область знаемого и незнаемого.

Личностные:

• осознают роль химии в познании окружающего мира.

Средства обучения:

- Раздаточные материалы с заданиями для совместной работы в парах сменного состава (приложение).
 - Мультимедийная техника.
- Таблицы: «Периодическая система Д.И. Менделеева», «План характеристики элемента по положению в ПС Д.И. Менделеева», «Зависимость свойств соединений элементов от положения в ПС Д.И. Менделеева».

Информационные источники:

- 1. Для студентов:
- 1.1. Литература:
- Габриелян, О.С. Химия / О.С. Габриелян, И.Г. Остроумов// Москва: Издательский центр «Академия», 2013.
 - 1.2. Internet-ресурсы:
 - ЭБС «Консультант студента»
 - 2. Для преподавателя:
 - Пресс И.А. Строение вещества: Учеб. пособие. СПб.: СЗТУ, 2004. 151 с. Ход занятия:

Этапы за-	Методы	Содержание деятельности		оцен-
нятия	обуче-	преподавателя	студентов	ка/само-
	ния			оценка
1. Орга- низацион- ный. Моти- вация учеб- ной дея- тельности	Устное сообще- ние.	Приветствует обучающихся, проверяет их готовность к занятию. Создает определенный психологический настрой. Отмечает присутствующих с целью разделения группы на 2 равные подгруппы.	Приветствуют преподавателя, проверяют свою готовность к занятию.	
2. Форми-	Про-	, , , , , , , , , , , , , , , , , , ,		
рование	блем-			
новых зна-	ный.			
ний, умений и навыков. 2.1. Актуа-				
лизация		Сообщает тему занятия,	Записывают тему	
опорных	Беседа.	цель и задачи занятия.	занятия в тетрадь.	
знаний,		Организует работу сту-	Отвечают на вопро-	
умений и		дентов по следующим	сы преподавателя:	
навыков.		вопросам:	- ПЗ был сформули-	

-Почему Д.И. Менделеев не мог дать эту формулировку? - Да, действительно, каждое обозначение в ПС имеет свой физический смысл — повторение и обобщение этого материала — цель нашего следующего этапа. Организует работу обущения в парах сменного состава.		
Коллек- тивный карточкам. взан способ обуче- ния - пары сменно- го со- става	2.2. Созда-	Самокон- троль и взаимо- контроль выполне- ния зада- ний каж- дой кар- точки.

				5
ние про-		студентов по сле-	суждают ответы друг	ное об-
блемной		дующим вопросам:	друга, приходят к	суждение.
ситуации.		- Подумайте, в чем	выводу о том, что	
		причина периодич-	причина периодичности	
		ности?	свойств элементов за-	
		1100171.		
			ключается в периодиче-	
			ской повторяемости	
			сходных электронных	
			конфигураций (строения	
			наружного энергетиче-	
			ского уровня).	
			Записывают вывод:	
		Диктует вывод: «Свой-	«Свойства ХЭ и образо-	
		1	•	
		ства ХЭ и образован-	ванных ими веществ	
		ных ими веществ	находятся в периодиче-	
		находятся в периоди-	ской зависимости от	
		ческой зависимости от	строения внешних элек-	
		строения внешних	тронных слоев атомов»	
		электронных слоев	Анализируют, об-	
		атомов».	суждают ответы друг	
		- Подумайте, харак-	друга, приходят к	
		теристики, каких	ВЫВОДУ О ТОМ, ЧТО	
		•	1	
		химических понятий	изучали характери-	
		Вы изучали сейчас,	стики атома химиче-	
		при работе в парах?	ского элемента, из-	
			менение свойств по	
			периоду и группе,	
			характер свойств	
			высшего оксида,	
			высшего гидроксида,	
			образованных дан-	
			'	
			ным химическим	
0.0.0		0	элементом.	
2.3.Постано		- Составьте план, по	Воспринимают учеб-	
вка учебной		которому можно	ную проблему.	
проблемы.		дать характеристику		
		атома химического		
		элемента по поло-		
		жению в ПС Д.И.		
		Менделеева?		
2.4. Реше-		ongonooba.		
•				
ной про-				
блемы.				
а) выдви-	Само-	Организует дея-	Формулируют гипо-	Совмест-
жение гипо-	стоя-	тельность обучаю-	тезу на основе ана-	ное об-
тезы;	тельная	щихся по решению	лиза характеристики	суждение.
,	работа,	учебной проблемы:	атома химического	
	работа,	1.Составление пла-	элемента, измене-	
			·	
	парах.	на решения постав-	ния свойств химиче-	

	I	×	T	
б) проверка гипотезы и формулировка окончательного решения.	Само- стоя- тельная работа	ленной задачи. 2. Решение задачи. 3.Формулировка гипотезы в виде вывода по итогам решения задачи. Сопровождает обучающихся в процессе решения задачи и выдвижения гипотезы. Организует работу по проверке выдвинутой гипотезы, подтверждает верность высказанного предположения; выдает эталон на бумажном носителе.	ского элемента по периоду и группе, характера свойств высшего оксида, высшего гидроксида, образованных данным химическим элементом. Предлагают свой план характеристики химического элемента по положению в ПС.	Самопро- верка, сравне- ние с эталоном (разда- точный матери- ал).
2.5. Доказа- тель-ство и применение найденного решения.	Само- стоя- тельная работа	Организует деятельность обучающихся по работе о характеристике элемента хлора по положению в ПСХЭ в соответствии с планом.	Выполняют по плану характеристику эле- мента хлора по по- ложению в ПХЭ.	Совмест- ное об- суждение, сравне- ние с эталоном (характе- ристика хлора). Оценка
	Прове- рочная работа	тельность обучаю- щихся по решению задачи – характери- стика калия по по- ложению в ПСХЭ.	Выполняют задание в соответствии с предложенным планом и сдают выполненное задание на проверку преподавателю.	препода- вателем.
3. Информация о д/з, инструктаж по его выполнению, рефлексия, подведение итогов	Беседа.	Организует деятельность по записи д/з: дать характеристику элемента алюминия по положению в ПСХЭ, анализу работы на занятии, благодарит за работу: -Пожалуйста, на маленьких листочках ответьте на любой из	Делают запись д/з, письменно отвечают на вопросы, анализируют, делают выводы.	Совмест- ное об- суждение.

предложенных вопросов	
(можно на все):	
• Сегодня на занятии я	
узнал	
• На занятии мне по-	
нравилось	
• Мне было трудно	
• Хотелось бы изучить	
подробнее	
Приводит слова Д.И.	
Менделеева <i>"По види-</i>	
мости, периодиче-	
скому закону будущее	
не грозит разрушени-	
ем, а только	
надстройки и разви-	
тие обещает»	
Д. И. Менделеев	
- Спасибо за работу!	

Приложение

«Раздаточный материал»

1. Строение атома

Атом - химически неделимая нейтральная частица.

Атом - сложная частица: в центре атома находится положительно заряженное ядро, состоящее из элементарных частиц — протонов (p), нейтронов (n), вокруг ядра вращаются электроны (n).

Электроны – (-) заряженные частицы.

Протоны – (+) заряженные частицы.

Нейтроны – не имеют заряда.

<u>Физический смысл порядкового номера элемента</u> - N (элемента) показывает (равен) = положительный заряд ядра атома элемента = число протонов ($^{!}$ p) в ядре = число всех электронов (e).

Число нейтронов $\binom{1}{6}$ = Ar (элемента)-N(элемента)

Электроны в атоме расположены не хаотично, а упорядоченно - слоями. Слой еназывают энергетический уровень.

Электроны, расположенные на последнем энергетическом уровне называют внешние (валентные электроны). Чаще всего, в образовании химических связей участвуют внешние электроны.

Физический смысл номера периода - <u>показывает количество энергетических уровней</u>.

Период – это <u>горизонтальный</u> ряд Периодической системы, который начинается щелочным металлом и заканчивается инертным газом.

Различают периоды:

малые (состоят из одного ряда)

большие (состоят из двух рядов)

Физический смысл номера группы - показывает количество внешних (валентных е-) для элементов главных подгрупп.

Группа – это вертикальный ряд Периодической системы (8 групп).

В каждой группе различают:

- элементы главной подгруппы (A) (**s** и **p**)
- элементы побочной подгруппы (B) (d и f)

Главная подгруппа начинается с элементов малых периодов.

Элементы главных подгрупп - (s,p) – элементы (имеют s,p–электроны наружного энергетического уровня).

Элементы побочных подгрупп - (d,f) – элементы (имеют d,f – электроны внутренних энергетических уровней).

<u>Пример:</u> определите состав атома магния. Решение: порядковый номер атома магния = 12. Следовательно, заряд ядра =+12; число протонов = 12; число всех электронов = 12. Относительная атомная масса = 24; следовательно, число нейтронов = 24-12 = 12. Номер периода «3», следовательно, число энергетических уровней = 3. Номер группы «2», следовательно, число внешних (валентных) электронов = 2.

Задание (выполните в тетради письменно): определите состав атома фосфора.

2. Электронные и графические схемы

Порядок заполнения электронами энергетических подуровней происходит в соответствии с правилами Клечковского:

1 правило - «Электроны в пределах одного энергетического уровня заполняют тот подуровень, для которого сумма (n+l) минимальна».

2 правило - «В случае, когда сумма (n+l) одинакова, заполняется подуровень с меньшим значением n».

Из правил Клечковского следует Порядок заполнения электронами энергетических подуровней.

Порядок заполнения электронами энергетических подуровней.

1s2s2p3s3p4s3d4p5s4d5p6s**5d**14f5d6p7s**6d**15f6d7p

5*d*¹-учитывать только для лантаноидов (Э (N) 58-71)

*6d*¹-учитывать только для актиноидов (Э (N) 90-103)

Пользуясь этим порядком, составляют электронные (и графические) схемы строения атомов.

Помнить!

пу.

s – подуровень (1 орбиталь) максимально может находиться 2 е-

р – подуровень (3 орбитали) максимально может находиться 6 е-

d – подуровень (5 орбиталей) максимально может находиться 10 е-

f – подуровень (7 орбиталей) максимально может находиться 14 е-

Электроны заполняют подуровни максимально, затем – по остаточному принци-

Электронная конфигурация (электронная формула) дает возможность определить принадлежность химического элемента к семейству (s,p,d,f): какой энергетический подуровень заполняется последним, такой и элемент.

Правило Гунда (Хунда)

«Электроны в пределах одного энергетического подуровня располагаются таким образом, чтобы их суммарный спин был максимальным».

Электроны с антипараллельными спинами спариваются.

<u>Пример:</u> составьте электронную схему строения атома фосфора. Решение: N(P) = 15 электронная схема $1s^22s^22p^63s^23p^3$, строение наружного энергетического уровня $3s^23p^3$, графическая схема строения наружного энергетического уровня

Фосфор – р-элемент.

<u>Задание (выполните в тетради письменно):</u> составьте электронную схему строения атома магния.

3. Классификация элементов

Химические элементы можно классифицировать не только по характеру застройки их электронных конфигураций, но и по их свойствам. Классификация химических элементов по свойствам подразумевает их деление на:

- 1. Металлы элементы главных подгрупп с числом валентных электронов от1 до3 (подгруппы IA, IIA, IIIA, кроме элемента бора), а также германий, олово, свинец, сурьма, висмут и полоний;
- 2. неметаллы бор и элементы главных подгрупп с числом валентных электронов от4 до7 (подгруппы IVA, VA, VIA, VIIA) кроме германия, олова, свинца, сурьмы, висмута и полония;
- 3. переходные элементы— элементы побочных подгрупп (IB–VIIB); в виде простых веществ ведут себя как металлы;
- 4. благородные газы элементы подгруппы VIIIA, атомы которых отличаются наиболее стабильными электронными конфигурациями (полностью завершенные энергетические подуровни).

<u>Пример</u>: проклассифицируйте следующие элементы по свойствам: магний, фосфор, самарий, ксенон, фтор. Решение: магний (IIA), фосфор (VA), самарий (IIIB), ксенон (VIIIA), фтор (VIIA). Следовательно, металл – магний; неметалл – фосфор, фтор; переходный элемент – самарий; благородный газ – ксенон.

Задание (выполните в тетради письменно): проклассифицируйте следующие элементы по свойствам: сера, азот, рубидий, гелий.

4. Изменение металлических и восстановительных свойств

<u>Металлические свойства (восстановительные свойства)</u> – способность атома (простого вещества) отдавать электроны.

Под металлическими (или восстановительными) свойствами элементов понимают способность их атомов к отдаче валентных электронов.

Металлические свойства наиболее характерны для элементов, атомы которых имеют небольшое число электронов на внешнем энергетическом уровне.

<u>По периоду</u> (горизонтальный ряд ПС) металлические (восстановительные) свойства уменьшаются, т.к. возрастает заряд ядра атомов элементов и уменьшается радиус атомов элементов.

<u>По группе</u> (вертикальный ряд) металлические (восстановительные) свойства возрастают, т.к. возрастает радиус атомов элементов.

<u>Пример:</u> расположите элементы: бериллий, углерод, литий в порядке увеличения металлических свойств. Решение: элементы находятся в одном периоде; по периоду металлические свойства уменьшаются, следовательно, углерод проявляет наименьшие металлические свойства, а литий – наибольшие. Ряд: углерод, бериллий, литий.

<u>Задание (выполните в тетради письменно)</u>: расположите элементы: стронций, бериллий, магний в порядке возрастания металлических свойств.

5. Изменение неметаллических и окислительных свойств

Неметаллические свойства (окислительная активность) – способность атомов элементов к присоединению электронов.

<u>Неметаллические свойства (окислительные свойства)</u> – способность атома (простого вещества) принимать электроны.

Движущей силой этого процесса является стремление атомов приобрести наиболее стабильную восьмиэлектронную конфигурацию благородных газов. Наибольшую тенденцию к присоединению электронов имеют атомы р-элементов, обладающие относительно большим числом собственных валентных электронов.

Количественной характеристикой неметаллических свойств (мерой неметаллических свойств) является электроотрицательность (ЭО; X)

<u>ЭО</u> – способность атома принимать на себя электроны (см. последний форзац учебника – ряд «Электроотрицательность»).

<u>По периоду</u> (горизонтальный ряд ПС) неметаллические (окислительные) свойства увеличиваются, т.к. возрастает заряд ядра атомов элементов и уменьшается радиус атомов элементов.

<u>По группе</u> (вертикальный ряд ПС) неметаллические (окислительные) свойства уменьшаются, т.к. возрастает радиус атомов элементов.

<u>Пример:</u> расположите элементы: сера, селен, кислород в порядке увеличения неметаллических свойств. Решение: элементы находятся в одной группе; по группе неметаллические свойства уменьшаются, следовательно, селен проявляет наименьшие неметаллические свойства, а кислород – наибольшие. Ряд: кислород, сера, селен.

<u>Задание (выполните в тетради письменно)</u>: расположите элементы: алюминий, магний, кремний в порядке возрастания неметаллических свойств.

6. Изменение основных и кислотных свойств

<u>Основные свойства</u> – это способность соединения элемента (высшего оксида, высшего гидроксида) взаимодействовать с кислотами.

<u>Кислотные свойства</u> - это способность соединения элемента (высшего оксида, высшего гидроксида) взаимодействовать с основаниями.

<u>По периоду</u> (горизонтальный ряд ПС) основные свойства (ВО, ВГ) уменьшаются, кислотные свойства (ВО, ВГ) увеличиваются, т.к. возрастает заряд ядра атомов элементов и уменьшается радиус атомов элементов.

<u>По группе</u> (вертикальный ряд ПС) основные свойства (ВО, ВГ) увеличиваются, кислотные свойства (ВО, ВГ) уменьшаются, т.к. возрастает радиус атомов элементов.

<u>Пример:</u> определите характер высших оксидов: Li_2O , SiO_2 , SrO. Решение: Li (IA), следовательно, Li_2O – основный; Si (IVA), следовательно, SiO_2 - кислотный, Sr (IIA),

следовательно, SrO – основный (смотри таблицу «Формулы высших оксидов, высших гидроксидов и их характер в зависимости от положения в ПС Д.И. Менделеева»).

Задание (выполните в тетради письменно): определите характер высших гидроксидов: брома, углерода, кальция.

Формулы высших оксидов, высших гидроксидов и их характер в зависимости от положения элемента в Периодической системе Д. И. Менделеева

	iomonimi omonicina b in	opriodi igoron guereme i	4aHaziaana
Номер груп-	Электронные формулы	Формула высшего оксида,	Формула высшего гидрок-
ПЫ	строения наружного	характер	сида, характер
	энергетического уровня		
I (A)	ns¹	R ₂ O (основный)	ROH(основный)
II (A)	ns ²	RO(основный)	R(OH) ₂ (основный)
		ВеО(амфотерный)	Ве(ОН)₂ (амфотерный)
III (A)	ns ² np ¹	R ₂ O ₃ (амфотерный)	R(OH) ₃ (амфотерный)
		В ₂ О ₃ (кислотный)	HBO₂ (кислота)
IV (A)	ns ² np ²	RO ₂ (кислотный)	H₂RO₃ (кислота)
V (A)	ns ² np ³	R ₂ O ₅ (кислотный)	H₃RO₄ (кислота), но HNO₃
VI (A)	ns ² np ⁴	RO ₃ (кислотный)	H ₂ RO ₄ (кислота)
VII (A)	ns ² np ⁵	R ₂ O ₇ (кислотный),	HRO ₄ (кислота),
		иск. F	искл. F

План характеристики элемента по положению в Периодической системе Д.И. Менделеева.

- Строение атома
 - 1. Номер элемента N (эл.)=
 - 2. заряд ядра атома +q =
 - 3. число протонов (¦P)=
 - 4. число электронов (е-)=
 - 5. Относительная атомная масса химического элемента (Ar)=
 - 6. число нейтронов $\binom{\frac{1}{0}}{}$ = Ar(эл.)- N (эл.)=
 - 7. N периода =; число энергетических уровней =
 - 8. N группы =; число внешних (валентных) электронов =
 - 9. Электронная схема строения атома.
 - 10. Строение наружного энергетического уровня.
 - 11. Графическая схема строения наружного энергетического уровня атома
 - 12. Качество элемента (s,p,d,f)
- II. <u>Свойства элемента (металлические или неметаллические)</u>
 - 1. Сравнение свойств по периоду
 - 2. Сравнение свойств по группе
- III. <u>Свойства соединений</u>
 - 1. Формула высшего оксида (ВО), его характер;
 - 2. Формула высшего гидроксида (ВГ), его характер;
 - 3. Формула летучего водородного соединения (ЛВС) (если есть).

Характеристика элемента хлора по положению в Периодической системе Д.И. Менделеева (эталон ответа)

I. Строение атома хлора (CI)

ОБРАЗОВАТЕЛЬНАЯ СРЕДА

- Номер элемента N(CI)=17
- заряд ядра атома +q =+17
- число протонов (¦P)=17
- число электронов (e⁻)=17
- относительная атомная масса химического элемента Ar (Cl)=35
- число нейтронов (३n)=Ar(Cl)- N (Cl)=35-17=18
- N периода = 3; число энергетических уровней = 3
- N группы = 7; число внешних (валентных) электронов =7
- Электронная схема строения атома 1s²2s²2p⁶3s²3p⁵
- Строение наружного энергетического уровня 3s²3p⁵
- Графическая схема строения наружного энергетического уровня
- Качество элемента: р элемент
- II. Свойства элемента хлора: СІ проявляет неметаллические свойства
- Сравнение неметаллических свойств по периоду: S < Cl < Ar (возрастают), т.к. уменьшается радиус атомов элементов, увеличивается заряд ядра атомов.
- Сравнение неметаллических свойств по группе: F > Cl > Br (убывают), т.к. увеличивается радиус атомов элементов.
 - III. Свойства соединений
 - Формула высшего оксида (BO) Cl₂O₇, его характер кислотный;
 - Формула высшего гидроксида (BГ) HClO₄, его характер кислотный (кислота);
 - Формула летучего водородного соединения (ЛВС) НСІ (хлороводород)